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Abstract
We introduce a model for temporally disordered directed percolation in which
the probability of spreading from a vertex (t, x), where t is the time and x is the
spatial coordinate, is independent of x but depends on t. Using a very efficient
algorithm we calculate low-density series for bond percolation on the directed
square lattice. Analysis of the series yields estimates for the critical point pc

and various critical exponents which are consistent with a continuous change
of the critical parameters as the strength of the disorder is increased.

PACS numbers: 05.50.+q, 05.10.−a

1. Introduction

Directed percolation (DP) can be thought of simply as a percolation process on a directed lattice
in which connections are allowed only in a preferred direction, e.g., on hyper-cubic lattices
connections are only allowed along edges connecting vertices with increasing coordinates. DP
is most commonly interpreted as a growth model and the preferred direction t is time. Bond
percolation is also a special case of a (d + 1)-dimensional stochastic cellular automaton [4].
On the square lattice the evolution is governed by the transition probabilities W(σx |σl, σr),
with σi = 1 if the vertex i is occupied and 0 otherwise, which is the probability of finding the
vertex x in state σx at time t given that, at time t −1, the vertices x−1 and x +1 were in states σl

and σr , respectively. Bond percolation corresponds to the choice W(0|σl, σr) = (1 − p)σl+σr .
The behaviour of the model is controlled by the spreading probability (or density of bonds)
p. When p is smaller than a critical value pc all clusters remain finite, and in this sub-critical
region any initial population will eventually die out. Above pc there is a non-zero probability
of finding an infinite cluster, the average cluster-size S(p) diverges as p → pc, and the initial
population will increase exponentially fast.

Directed percolation, and a closely related continuous time version the contact process
[9], serve as the prime examples of models for population growth exhibiting a non-equilibrium
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phase transition into an absorbing state (a state from which the system cannot escape), in these
cases the state totally devoid of occupied sites. DP-type transitions are also encountered in
many other situations, perhaps most prominently in models for chemical reactions [21, 6]
including heterogeneous catalysis and surface reactions [22]. For a recent comprehensive
review see [10].

Most studies of non-equilibrium systems have been limited to cases without disorder, that
is the spreading probability is homogeneous in both time and space. Obviously in many real
systems this idealization is unrealistic. Often some degree of disorder is present, e.g., in a
real catalyst some sites may be blocked by impurities leading one to consider models with
quenched spatial disorder. Likewise in trying to model real growth processes one would like
to consider temporal disorder so as to model changes in conditions from year to year, seasonal
changes, etc.

Non-equilibrium models with quenched spatial disorder were considered by Kinzel [17].
He argued that the Harris criterion [8], well known from disordered spin systems, should
apply for DP as well. Harris argued that in systems with quenched disorder one must have
dν � 2, where ν is the correlation length exponent. This means that quenched disorder is
a relevant perturbation and thus should change the critical exponents if in the pure system
dν < 2. The Harris criterion has been rigorously established for a large class of disordered
systems by Chayes et al [2]. In the case of DP the Harris criterion becomes dν⊥ < 2, and
quenched disorder is a relevant perturbation for d � 3. The effect of quenched disorder
was studied numerically by Noest [19, 20] who found a marked changed in the static critical
exponents independent of the strength of the disorder. Moreira and Dickman [18, 3] used
Monte Carlo simulations to study the site-diluted two-dimensional contact process on the
square lattice. They found a marked change in the static critical exponents β and ν⊥ with
a value of ν⊥ = 1.00(9) consistent with the Harris criterion. The dynamic behaviour was
found to be incompatible with the usual scaling observed in pure models. In particular,
critical spreading was found to be logarithmic rather than power law, and the survival
probability in the sub-critical regime decayed algebraically rather that exponentially. This
means that the dynamical critical correlation length exponent ν‖ is undefined. Janssen [13]
investigated the problem using renormalization group theory and confirmed the findings
of Moreira and Dickman. Recently, Hooyberghs, Iglói and Vanderzande [11, 12] have
investigated these problems using a real-space renormalization group framework and the
numerical technique of the density matrix renormalization group. They found that for
strong enough disorder the behaviour is controlled by a strong disorder fixed point, with
logarithmic dynamical correlations and critical exponents different from the pure system.
For weaker disorder the numerical evidence was consistent with continuously varying static
exponents.

Kinzel [17] also briefly considered the effect of temporal disorder and argued that a
Harris-type criterion applied but with dν⊥ replaced with ν‖. Since ν‖ = 1.733 847(6) [16]
for (1+1)-dimensional DP this would make temporal disorder a relevant perturbation. In
a previous paper [15], we studied temporally disordered directed percolation on the square
lattice using a simple model in which spreading from some rows was deterministic (that is
spreading takes place with probability 1) while spreading from the other rows took place with
probability p as in the pure model. Disorder was introduced by letting any given row be
‘deterministic’ with probability α independent of other rows. The model was studied using
high-density series expansions for the percolation probability and Monte Carlo simulations of
growing clusters from a single seed. The major finding was that the critical exponents changed
continuously with the strength of the disorder. In particular, we found that ν‖ < 2 over a wide
range of values in apparent violation of the Harris criterion.
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The model used in [15] is not suitable for a low-density expansion so in this paper we
study another model of DP with temporal disorder. The spreading probability p(t) is chosen
at random to be either p or αp with probability 1

2 . By varying the parameter α we can vary
the strength of the disorder. There is an obvious symmetry between the two regions α < 1
and α > 1 and we shall therefore only consider the case α > 1. Analysis of the series
indicate that for any given value of α there is critical point pc(α) where the system has a phase
transition. For values of the spreading probability p close to pc(α) the model changes from
periods of sub-critical to periods of super-critical growth. For large values of α there is a very
pronounced difference between the two regimes and the population dynamics changes from
feast to famine. In the infinite lattice limit the system will have arbitrarily long stretches of
‘famine’ conditions in which the population is rapidly reduced and very likely do die out. Note
that we can be sure that the model will have sub- and super-critical regions. We can simply
choose p > pc, where pc is the critical point of the pure model, and we will always have a
super-critical growth process, while for αp < pc the growth process is always sub-critical.

In section 2, we give a description of the method used to derive the low-density series for
this model. The series is then analysed (for various values of α) and the results are presented
in section 3. Finally, section 4 contains a brief summary and discussion of the main results.

2. Calculation of low-density series

In the low-density phase (p < pc) many quantities of interest can be derived from the pair-
connectedness Ct,x(p), which is the probability that the vertex at position x is occupied at
time t given that the origin was occupied at t = 0. Of particular interest are moments of the
pair-connectedness

µm,n(p) =
∑

t

∑
x

tmxnCt,x(p). (1)

Due to symmetry moments involving odd powers of x are identically zero. The remaining
moments diverge as p approaches pc from below

µm,n(p) ∝ (pc − p)−(γ +mν‖+nν⊥), p → p−
c . (2)

In a previous paper [16], we gave a detailed description of how the graph theoretical
properties of the pair-connectedness [1] can be turned into a very efficient algorithm for the
calculation of low-density series expansions for ordinary directed percolation. The series
expansions for the disordered model is a simple generalization of this work. Before describing
the algorithm for the disorder system we will briefly review the pure case.

It has been shown [1] that the pair-connectedness can be expressed as a sum over all
graphs (or finite clusters) formed by taking unions of directed paths connecting the origin to
the vertex (x, t),

Ct,x(p) =
∑

g

d(g)p|g|, (3)

where |g| is the number of bonds in g. The weight d(g) = (−1)c(g), where c(g) is the
cyclomatic number of the graph g. Note that c(g) is increased by 1 whenever two paths
join, e.g., if there are two incoming bonds on a vertex. The restriction to unions of paths
is very strong and one immediate consequence is that graphs with dangling parts make no
contribution to Ct,x and any contributing graph terminates exactly at (t, x). Another way
of stating the restriction is that any vertex with an incoming bond must have an outgoing
bond unless it is the terminal vertex (t, x). Any directed path to a vertex whose parallel
distance from the origin is t contains at least t bonds. One can do much better by using a
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Figure 1. Example of how the boundary line (cutting through the filled circles) is moved in order
to insert another vertex (shaded circle).

so-called non-nodal graph expansion [5] to extend the series to order 2t . A graph g is nodal
if it has a vertex (other than the terminal vertex) through which all paths pass. It is clear
that each such nodal point effectively works as a new origin for the cluster growth, and we
can obviously obtain any contributing graph by concatenating non-nodal graphs. Note that
the graph consisting of a single bond is non-nodal so all linear graphs can be obtained by
repeated concatenations. This is the essential idea behind the non-nodal graph expansion,
which proceeds in two principal steps. First, we calculate the contribution C∗

t,x of non-nodal
graphs to the pair-connectedness. The calculation is done up to a preset order N, where N is
limited by the available computational resources (primarily physical memory). Next, we use
repeated concatenation operations of C∗

t,x to calculate the pair-connectedness Ct,x and from
this we finally calculate various moments µm,n(p).

The calculation of C∗
t,x is done efficiently using transfer-matrix techniques. This involves

drawing a boundary line across a finite slice of the lattice and then moving the boundary line
such that one adds row after row with each row built up one vertex at a time, as illustrated in
figure 1. The sum over all contributing graphs is calculated as the lattice is constructed. At
any given stage the boundary line cuts through a number of, say j , vertices. There are two
possible states (0 or 1) per vertex, corresponding to vertices with (1) or without (0) incoming
bonds, leading to a total of 2j possible boundary configurations. However, as explained in [16]
not all the 2j possible configurations are required. Many of them can be discarded because
they either do not make a contribution to C∗

t,x or only contributes above order N. The weight
of each configuration is given by a polynomial P in p truncated at order N. The updating of P,
as the boundary line is moved to insert a new vertex, depends only on the states of the vertices
marked x and x + 1 in figure 1 and are given simply by

P(S1,1) = p2P(S1,0) + pP (S1,1) − p2P(S1,1),

P (S0,1) = pP (S1,0) + P(S0,1) − pP (S1,1),

P (S1,0) = pP (S1,0),

P (S0,0) = P(S0,0).

(4)

Here Sa,b is the configuration before the move which has the vertex at x in state a and the
vertex at x + 1 in state b, while Sa,b is the configuration after the move which has the new
vertex at x ′ in state a and the vertex at x + 1 in state b. For a derivation of the updating rules
see [16].
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Limiting the calculation to non-nodal contributions is very simple; whenever the boundary
line reaches the horizontal position one just sets to zero the polynomials of states with a single
incoming bond. This obviously ensures that configurations with a nodal point are deleted
from the calculation. The pair-connectedness at the following time can be calculated from
the states with incoming bonds at nearest-neighbour sites and no incoming bonds on any
other sites. In this way, we calculate the two non-nodal series C∗

t (p) = ∑
x C∗

t,x(p) and
X∗

t (p) = ∑
x x2C∗

t,x(p).
The generalization to DP with temporal disorder is quite simple. First of all the

configuration weights P will depend on two variables u and v corresponding to the two
spreading probabilities. Let us consider the situation in which a row has just been completed.
Since the probability is 1

2 that spreading from a given row occurs with probability u or v,
respectively, obviously P(u, v) = P(v, u). Next, we insert a new row. Formally, we can
express the weight of any new configuration S as a weighted sum over the weights of the
configurations S in the row above

PS(u, v) =
∑

S

W(u)PS(u, v) +
∑

S

W(v)PS(u, v). (5)

From the nature of the problem it is clear that the weight W is the same (apart from the change
of variable). This means that it is very simple to calculate the non-nodal expansion. Having
completed a row, we just use the updating rules in equation (4) with the spreading fixed at u.
This gives a set of incomplete weights

QS(u, v) =
∑

S

W(u)PS(u, v). (6)

But since PS(u, v) is symmetric in u and v we get the desired final result as

PS(u, v) = QS(u, v) + QS(v, u). (7)

Note that this is a very efficient algorithm. Naively one would have expected that to calculate
the pair-connectedness one would have to sum over all 2t realizations of the disorder. However,
as we have just seen this is not necessary, the only complication being the requirement
to maintain a two parameter generating function. Ultimately, we shall calculate series for
µm,n(p), by fixing a value of α and setting u = p and v = αp. So we need to retain only the
coefficients of uivj provided i + j � N . The first few terms in the expansion for C∗

t (u, v) are

C∗
1 (u, v) = 2(u + v)

C∗
2 (u, v) = −u4 − 2u2v2 − v4

C∗
3 (u, v) = 2u7 − 2u6 + (4u5 − 6u4)v2 + 2u4v3 + (2u3 − 6u2)v4 + 4u2v5 − 2v6 + 2v7

C∗
4 (u, v) = u12 − 4u11 + 8u9 − 5u8 + (2u10 − 8u9 + 24u7 − 20u6)v2 − (4u8 − 8u6)v3

+ (3u8 − 8u7 + 24u5 − 30u4)v4 − (8u6 − 24u4)v5 + (4u6 − 8u5 + 8u3 − 20u2)v6

− (8u4 − 24u2)v7 + (4u3 − 4u − 5)v8 − (8u2 − 8)v9 + 2u2v10 − 4v11 + v12.

Note that C∗
t (p, p) is 2tC∗

t (p), where C∗
t (p) is the non-nodal pair-connectedness of the pure

model. In order to calculate our final series for the average cluster-size S(p) and the moments
µ1,0(p) and µ2,0(p) we simply fix a value of α. We then use repeated concatenations of
C∗

t (p, αp)/2t to calculate the pair-connectedness Ct(p) (with α fixed), which in turn we use
to calculate the moments. The series for the second transverse moment µ0,2 is obtained as
µ0,2 = S2(p)

∑
t X

∗
t (p).

The series for C∗
t (u, v) was derived correctly to order 115 (that is all coefficients of uivj

were calculated exactly for i + j � 115). This obviously results a series for S(p) and the other
moments to order 115 as well. The algorithm used up to 5 GB of physical memory and the
total CPU time was about 30 days.



1446 I Jensen

Table 1. Estimates for the critical point pc and critical exponents γ , ν‖ and ν⊥ at various values
of the disorder strength α.

α pc γ ν‖ ν⊥

1.00 0.644 7002(2) 2.277 65(5) 1.733 85(5) 1.096 87(1)
1.02 0.638 3905(5) 2.2779(1) 1.734 42(8) 1.097 45(5)
1.04 0.632 3450(10) 2.2825(5) 1.736 35(15) 1.0993(2)
1.06 0.626 5485(15) 2.2895(10) 1.7394(3) 1.1025(5)
1.08 0.620 9865(25) 2.299(2) 1.7435(5) 1.1068(10)
1.10 0.615 645(4) 2.310(5) 1.748(2) 1.1135(25)
1.20 0.591 83(3) 2.40(5) 1.785(10) 1.16(3)
1.30 0.572 00(6) 2.5(1) 1.825(25) 1.19(4)
1.40 0.555 20(10) 2.57(7) 1.875(50) 1.25(5)
1.50 0.5407(2) 2.7(1) 1.92(5) 1.33(10)
1.60 0.5282(4) 2.8(2) 1.95(8) 1.36(10)
1.70 0.5174(6) 2.9(2) 2.0(1) 1.34(10)

3. Analysis of series

The various series were analysed using inhomogeneous differential approximants [7]. Suffice
to say that a Kth-order differential approximant to a function f is a solution to an
inhomogeneous differential equation

K∑
i=0

Qi(x)

(
x

d

dx

)i

f̃ (x) = P(x), (8)

where the coefficients in the polynomials Qi and P of order Ni and L, respectively, are chosen
so that the series for the function f̃ (x) agrees with the series coefficients of f . The equations
are readily solved as long as the total number of unknown coefficients in the polynomials is
smaller than the order of the series n. The possible singularities of the series appear as the
zeros xi of the polynomial QK and the associated critical exponent λi is estimated from the
indicial equation.

Our use of differential approximants for series analysis has been detailed in previous
papers [14, 16] and the interested reader can refer to these papers and the comprehensive
review [7] for further details. Typically, we obtain estimates for pc and the critical exponents
by averaging values obtained from second- and third-order differential approximants. For
each order L of the inhomogeneous polynomial we average over those approximants which
use at least the first 90% of the terms in the series. A rough error estimate is obtained from
the spread among the approximants. Note that these error bounds should not be viewed as a
measure of the true error as they cannot include possible systematic sources of error.

In figure 2, we have plotted the estimates for the critical point pc and the critical exponents
γ , ν‖ and ν⊥ as a function of the disorder strength α (some of the estimates are listed explicitly
in table 1). The estimates were obtained by analysing the series S(p) ∝ (p − pc)

−γ ,
µ2,0(p)/µ1,0(p) ∝ (p − pc)

−ν‖ and µ0,2(p)/S(p) ∝ (p − pc)
−2ν⊥ , respectively, and are

based on results using both second- and third-order differential approximants with varying
degrees of the inhomogeneous polynomial. The results are clearly compatible with a
continuous change in all the critical parameters as the strength of the disorder α increases.
Naturally, we observe a decrease in the value of the critical point pc, and in particular we note
that αpc � 1. The critical exponents all increase with increasing α. In particular we note that
ν‖ < 2, at least when α � 1.5. It is also clear that the change in the values of the critical
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Figure 2. Estimates for the critical point pc and critical exponents γ , ν‖ and ν⊥ as a function of
the disorder strength α.

Table 2. Estimates of the critical point pc and critical exponents γ , ν‖ and 2ν⊥ with α = 1.1, as
obtained from third-order differential approximants (L is the order of the inhomogeneous term).

L pc γ pc ν‖ pc 2ν⊥

0 0.615 6457(10) 2.3114(29) 0.615 644(71) 1.83(11) 0.615 6455(42) 2.2275(43)
5 0.615 6454(17) 2.3115(17) 0.615 634(35) 1.765(23) 0.615 6474(25) 2.2294(29)

10 0.615 6399(16) 2.3070(15) 0.615 6464(23) 1.7489(11) 0.615 6449(28) 2.2268(29)
15 0.615 6437(22) 2.3101(18) 0.615 6427(82) 1.7491(30) 0.615 6458(28) 2.2277(30)
20 0.615 6460(26) 2.3121(25) 0.615 6407(85) 1.7483(26) 0.615 6447(79) 2.2270(75)

exponents is larger than the estimated error bars, clearly indicating that the change is not due
merely to less well-behaved series. When the disorder is relatively weak (α close to 1) the
estimates for both pc and the exponents are still quite sharp, but as α is increased the estimated
error bars become large and for values of α � 1.5 the exponent estimates are inaccurate.

As a concrete example of the analysis we show some detailed results from the analysis
with the particular value α = 1.1. In table 2, we have listed estimates for pc and the critical
exponents γ , ν‖ and 2ν⊥. The estimates of pc are consistent to five digits both among the
three series as well as among the approximants using different orders of the inhomogeneous
polynomial. Likewise the estimates for the exponents are consistent as we vary the order of the
inhomogeneous polynomial (the only exception being the L = 0 and L = 5 estimates of ν‖).
Taking into account the spread among the different sets of approximants (while ignoring the
obviously spurious results for ν‖) we arrive at the estimates listed in table 1. To gauge whether
there are pronounced sources of systematic errors we plot in figure 3 the estimates for the
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Figure 3. Estimates of the critical point pc and critical exponents γ , ν‖ and 2ν⊥ with α = 1.1
plotted versus the number of terms used by the third-order differential approximants.

critical point pc and the critical exponents γ , ν‖ and 2ν⊥ as a function of the number of terms
used by the differential approximants. The critical point estimates are those obtained from the
cluster-size series S(p). Each point in these plots corresponds to the estimate obtained from
a single third-order differential approximant. From these plots we observe that the estimates
do not change much as the number of terms is increased and thus conclude that there does not
appear to be any systematic errors in the estimates.

4. Summary

We have introduced a simple model for directed percolation with temporal disorder, described
a very efficient algorithm for the derivation of low-density series expansions for this model
and presented results from the analysis of the series. The main result from the series analysis
is that the model has a critical point pc(α) which varies continuously with α as does the critical
exponents γ , ν‖ and ν⊥. The estimates for the critical exponent ν‖ < 2 for most values of the
disorder in apparent violation of the Harris criterion.

E-mail or WWW retrieval of series

The series for the directed percolation problem studied in this paper can be obtained via e-mail
by sending a request to I.Jensen@ms.unimelb.edu.au or via the world wide web on the URL
http://www.ms.unimelb.edu.au/∼iwan/ by following the relevant links.
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